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In a grade 5 class, the students are engaged in investigating the number of faces of a regular prism. The 
teacher has asked the following question: “If I know the name of a prism, can I deduce the number of 
its faces?” Addressing the class, Jim, one of the students, summarizes his findings and says: 

 
Jim: Uh, yes, we can deduce the number of faces if we know the name of the prism because, if we 

take the example of a hexagonal prism, its bases are hexagons as the name says . . . [He touches 
one of the bases of a plastic hexagonal prism that he is holding in his right hand; 
see Figure 26.1, Picture 1]. 

Teacher: Excellent. 
Jim: . . . of the prism. So each edge [touching one of the edges; see Figure 26.1, Picture 2] 

has a face so a hexagon has 6 edges [touching with his hands several faces of the 
hexagon; see Figure 26.1, Picture 3]. So there are 6 lateral faces, and if we count the 
bases [making a round gesture with the index of his right hand; see Figure 26.1, 
Picture 4], it’s 8 faces. 

 
There are several elements in this short passage, which comes from a classroom in Ottawa, that 

have become relevant in contemporary discussions of mathematics education. These elements deal with 
a clear understanding of the roles played by the material geometric artifact, the tactile movement of 
Jim’s hands around the physical geometric artifact and the linguistic activity that Jim deploys while touching 
it, and Jim’s perception and imagination in the course of his embodied meaning-making process. Attention 
to these elements points to the idea that mathematical meanings that arise in teaching and learning are 
multimodal. More broadly, attention to these elements comes from new conceptions about human cognition, 
marked in particular by new understandings of the role of the body, language, and material culture. 
Distinct from traditional approaches, these conceptions highlight the cognitive role of semiotics and 
embodiment in mathematics thinking, teaching, and learning. Within these new conceptions, gestures, body 
posture, kinesthetic actions, artifacts, and signs in general are considered a fruitful array of resources to 
be taken into account when investigating how students learn and how teachers teach (e.g., Arzarello, 
2006; Bautista & Roth, 2012; Borba & Villareal, 2006; Edwards, Radford, & Arzarello, 2009; Forest & 
Mercier, 2012; Radford & D’Amore, 2006; Radford, Schubring, & Seeger, 2008). These sensible and 
material resources are not considered mere epiphenomena of teaching and learning: They are conceptualized 
as central elements of the students’ and teachers’ mathematical thinking.  

There are, however, a variety of interpretations of the role that humans’ tactile-kinesthetic bodily 
experience of the world and their interaction with artifacts and material culture play in the way humans think 
and come [p. 701 starts here] to know. 
 
 

 

 



 

    

    
Picture 1 Picture 2 Picture 3 Picture 4 

Figure 26.1. Jim touching the plastic hexagon and making gestures. 
 
These interpretations depend on conceptions of cognition. For instance, some approaches inspired by 
cognitive linguistics (e.g., Fauconnier & Turner, 2002; Friedrich, 1970) emphasize the metaphoric 
dimension of language and the integrative constitution of embodied mental spaces (see, e.g., Edwards, 
2009; Lakoff & Núñez, 2000; Yoon, Thomas, & Dreyfus, 2011). Other approaches, inspired by 
research in phenomenology, emphasize the “fleshy” nature of thought (Bautista & Roth, 2012; Roth, 
2010; Thom & Roth, 2011), and yet others stress the materiality of cognition and its cultural-
historical dimensions (de Freitas & Sinclair, 2013; Malafouris, 2012; Radford, 2013). All in all, these 
approaches claim that meaning and cognition are deeply rooted in physical, embodied existence and try to 
offer an answer to the questions of how meaning arises, and how thought is related to action, emotion, and 
perception. 

This chapter provides a critical discussion of conceptualizations and applications of embodiment in 
mathematics education. In the next two sections, we discuss conceptions of human cognition and the role 
of embodiment and multimodality in general. This is followed by a section where we review several 
theories of embodiment in mathematics teaching and learning, including Piagetian inspired theory, 
semiotic oriented theory, enactivism, and phenomenological and materialist approaches. In the 
subsequent two sections, we delve in more detail into embodiment as featured in cultural-historical theory 
and cognitive linguistics, respectively. The chapter ends with a discussion of some open problems and 
possible new lines of inquiry. 

 
The Human Mind 

 
In the grade 5 example in the previous section, the students are exploring regular prisms. In the two 
previous lessons, the teacher and the students had discussed some key differences among three-dimensional 
solids; they had also distinguished between round solids and prisms. In this third lesson, the teacher shifts 
the investigation to the prisms’ number of faces. The question is not asked for a specific prism. The 
question is asked in general. Like the other students in the class, Jim focuses on a specific prism; in his 
case, he chooses the hexagonal prism. He does know that the question is not about this particular prism. 
His answer attempts to cover other prisms as well. How can we interpret Jim’s process of knowing? 

 
 
 



 

Rationalist Epistemologies 
 

Rationalist epistemologies of the Cartesian type argue that to cognize something, the human mind 
separates the thing to be known into parts. The human mind is supposed to operate analytically. It is, 
indeed, through the analysis of the thing’s parts that the thing is finally known. The investigation of 
one or some of these parts (in this case, the consideration not of a prism in general, but a particular prism) 
would allow Jim to know proper- ties of the whole thing to be known—the prism in general. The 17th 
century Cartesian logician Antoine Arnauld (1861) calls this knowing process abstraction: 

 

The limited extent of our mind renders us incapable of comprehending perfectly things which are a little 
complex, in any other way than by considering them in their parts, and, as it were, through the phases 
which they are capable of receiving. This is what may be termed, generally, knowing by means of 
abstraction. (p. 45) 

 
Within this context, Jim targets something general through something particular. Prompted by the 
teacher’s [p. 702 starts here] question about prisms in general, he talks about the prism in general 
through a specific prism—the hexagonal prism, or rather, through a specific instance of the hexagonal 
prism, namely the one he holds in his hands. 

This account of Jim’s process of knowing goes back, in fact, to the Aristotelian concept of 
abstraction—a concept defined by the omission of attributes. The plastic nature of the hexagonal prism 
that Jim holds in his hand, its color, weight, and many other attributes, are omitted in order to think of the 
hexagonal prism in general, which in turn is apparently considered without its specific 
hexagonal property to think of the prism in general. In this account of knowing, the human mind is 
conceived of as equipped with the required discriminatory procedures that allow it to discard some 
attributes and to keep others. Additionally, objects of knowledge are conceived of as amenable to 
decomposition and analysis. 
 
Empirical Epistemologies 

 
Empirical epistemologies provide a different account of Jim’s process of knowing. Thus, within a radical 
empirical epistemology—for instance, the one articulated by David Hume in A Treatise of Human 
Nature (1739/1965)— general properties of mathematical objects are not properties of the objects per se. 
They are properties that the individual, within the realm of her sensorial (also called sensible or 
sensuous) possibilities, bestows on objects. In this line of thought, the number of faces of a regular prism 
is not something that pertains to the prism as such, that is, to the prism as a kind of Platonic object 
independent of our senses. That number is rather the result of the sensorial experience that Jim makes 
of the various prisms he encounters in the classroom and in life. It is the impression of the sensorial 
experiences that Hume calls ideas. So, by touching, perceiving, holding, and moving his hands on the 
prism, Jim forms ideas. And in associating one idea with others, Jim forms more and more complex 
ideas. In a passage of An Enquiry Concerning Human Understanding, Hume (1748/1921) notes that 
although 

our thought seems to possess this unbounded liberty, we shall find, upon a nearer examination, that it is 
really confined within very narrow limits, and that all this creative power of the mind amounts to no 
more than the faculty of compounding, transposing, augmenting, or diminishing the materials afforded 
us by the senses and experience. (p. 16) 



 

 
In this account, the number of faces of a prism is an association of ideas that originates in Jim’s 
empirical experience of the world—what Hume (1748/1921) calls a “habit” of thought (p. 43). 

 
 
 
The Epistemological Role of Embodiment and Multimodality in 
Rationalist Epistemologies 

 
For the rationalist camp, cultural artifacts and the sentient body are not a source of knowledge. In his 
Meditations, Descartes (1641/1982) argues that things are grasped not through sensuous 
experiences but by the intellect alone: things “are not perceived because they are seen and touched, but 
only because they are correctly comprehended by the mind” (p. 26; our translation). In the same vein, 
another rationalist—Gottfried Wilhelm Leibniz—contended that “necessary truths such as found in pure 
mathematics, and particularly in arithmetic and in geometry, must have principles whose proof does not 
depend upon examples, nor consequently upon the testimony of the senses” (1705/1949, p. 44). A 
rationalist pedagogy would make little room for a sensuous experience in mathematics teaching and 
learning. 

 
Embodiment in Empiricist Epistemologies 

 
For the empiricist camp, by contrast, the sentient body is the source of knowledge. But because there is 
a limit to what humans can sense, the epistemic role of the body appears often as a constraint to what 
can be known. Hume (1739/1965) illustrated this point very well, arguing that the first principles of 
geometry, from which propositions are derived with alleged universality and exactness, rest, on 
closer examination, on “loose judgments of the senses and imagination” (pp. 70–71). This is why Hume 
(1739/1965) considered geometry an inexact science. Geometry’s first principles are indeed still drawn 
from “the general appearance of the objects; and that appearance can never afford us any security, when 
we examine the prodigious minuteness of which nature is susceptible” (Hume, 1739/1965, p. 71). 
Because we cannot perceive minute angles, lines, and other geo- metric objects beyond human 
capacities, because we cannot transcend the threshold of human perceptual minima, “we have no 
standard . . . as to assure us of the truth of [geometric] proposition[s]” (1739/1965, p. 71). Regardless of 
the limits of what can be known as a result of the sensorial limits of our body, an empiricist pedagogy 
would nonetheless rely on, and encourage, sensorial experiences, since in this epistemological account 
we do not have any other source other than our body and our senses from which to learn and form 
ideas. [p. 703 starts here] 

 
Embodiment in Kant’s Epistemology 

 
The previous discussion highlights the tremendous differences between the empiricist and the 
rationalist camps. The empiricists claim that nothing can be in the mind if it has not been in the senses 
first; the rationalists claim that nothing can be in the senses if it has not been in the mind first. Kant tried 
something daunting: to offer a theoretically coherent middle point between empiricism and 
rationalism—an empiricist-rationalist theory of knowing. This project is contained in Critique of Pure 
Reason, published in 1781 (Kant, 1781/2003). 



 

In 1770 Kant was engaged in making a distinction between two kinds of knowledge: sensible and 
intelligible knowledge. Kant suggested that sensible knowledge involves all that can be known through 
our body and our senses, whereas intelligible knowledge comprises all that cannot be known by the senses 
but by the intellect or the mind only. In other words, sensible knowledge is what results from sensations, 
whereas intelligible knowledge is what results from representations of things that cannot by their own 
nature come before the senses. Kant was defending the idea that sensible and intelligible knowledge 
are two separate things. He went even further and claimed that there is no continuity between sensible 
(also called sensuous) and intelligible knowledge. These two realms of knowledge should be kept apart. 
He stated a methodological “precept”: to take care not to allow the principles of sensuous cognition to 
transgress their limits and affect the intellectual concepts (Kant, 1770/1894). Presented with Jim’s 
classroom episode dis- cussed previously, in 1770 Kant would have probably said that through the perceptual 
and tactile activity with the prism Jim came up with a sensible concept (i.e., a concept derived from 
experience), not with an a priori concept (in Kant’s terminology, a concept independent of all 
experience and all impression of the senses). Kant would have warned us to follow his precept and to avoid 
confounding Jim’s constructed experimental concept with the intelligible concept of the prism. 

In Critique of Pure Reason, the sensible and the intelligible appear no longer as two separate 
realms but as related elements of human cognition. Presented with the same classroom episode in 
1781, Kant would probably have said that Jim senses the physical prism through a very specific human 
capacity for being affected by material things. The physical prism appears to Jim not as such, 
directly, but as a kind of passive or receptive form of encountering the object mediated by the human 
modes of sensibility: sight, hearing, touch, taste, smell, and so forth. The effect on Jim that results from 
the receptive encounter of the object is what Kant calls sensation. Sensation, in other words, is the 
subjective act of being affected that results from the action of physical things on sensibility. It can be a 
specific color,  sound, heat, and so forth. However, sensibility and sensation cannot lead by themselves 
to the concept of prism. They cannot yield knowledge of any object (Kant, 1781/2003, p. 73, A28/B44). 

 They are alterations in Jim’s body, not the qualities of the object that make it a prism. How, then, 
can Jim come up with the concept of prism if sensuous experience is not enough? Kant introduces a crucial 
concept in this regard: the concept of intuition, which can roughly be translated as a passive form of 
representation through which an object (e.g., the prism) appears to Jim. Despite this refinement in the 
account of Jim’s coming to know the prism and its properties, the question remains: How can Jim come up 
with the concept of prism if sensuous experience is not enough? Here is Kant’s answer: The concept of 
prism does not arise out of what Jim can possibly discern through inspection of the physical artifact where 
he could read off its properties. The passive representation of the prism (i.e., the physical artifact) 
allows him “to bring out what was necessarily implied in the concept.” (Kant, 1781/2003, p. 19, Bxii). In 
other words, if Jim was able to recognize the prism as such, it was not as a result of his embodied 
activity (which remains subjective and incapable of transcending the situatedness of his own 
experience), nor was it because of the manner in which the physical object appeared to Jim through his 
senses in its passive representation. The reason is that Jim mobilized a concept of prism that he already 
had before any possible experience. Indeed, in Kant’s eyes, the concept of prism and all 
mathematical concepts carry with them their own conceptual proper- ties. These properties are universal 
and logically necessary. They do not depend on Jim or another individual. As a result, they cannot be 
derived from experience. Because for Kant mathematical concepts are not derived from 
experience, Kant called them a priori: “We shall understand by a priori knowledge, not knowledge 
independent of this or that experience, but knowledge absolutely independent of all experience” 
(1781/2003, p. 43, B3). 

To sum up, the role of embodiment and multimodal- ity in Kant’s theory of knowing was based 



 

on the distinction between two kinds of knowledge: the sensible and the intelligible. Although in the 
1770 Dissertation these kinds of knowledge were conceived of as separate and different, in 1781 in 
Critique of Pure Reason they were conceived of as cooperating with each other (Kant, 1781/2003, p. 92, 
A50/B74). As a result, embodiment and [p.704 starts here] multimodality came to the forefront and gained a 
more central epistemological role. As Kant asserts in a famous passage in Critique of Pure Reason, 
without sensibility no intelligible object would be given to us. Without the intellect, no sensible object 
would be thought (Kant, 1781/2003, p. 93; A51/75 rephrased). Although embodiment and 
multimodality came to play a more prominent role in Kant’s epistemological account of the senses, 
their contribution remained con- fined to providing the intellect with the raw material for it to be set into 
motion. In Kant’s view, the empirical data becomes thinkable only because the intellect picks it up and 
endows it with conceptual content. For intelligible knowledge is not the content of generalized 
experience. This is why Jim, in the course of his mathematical experience, cannot possibly derive the 
universal and necessary properties of the prism that make it a prism in the mathematical sense. Universal 
necessity is unattainable from the apparent “necessity” that arises from experience, which remains always 
situated in space and time. If Jim comes to recognize the prism as an ideal object with its universal 
mathematical properties, it is not because of experience. 

 
In Kant’s account, the architectonic constitution of the human mind, with its arsenal of a priori 

knowledge and pure principles, provides Jim with “nothing but what may be called the pure schema of 
possible experience” (Kant, 1781/2003, p. 258, A236– 237/B295–296). 

But what is a schema for Kant exactly? The schema is a kind of analogical procedure—a 
“monogram” (Kant, 1781/2003, p. 183, A 142/B 181)—that unveils the link between the intellectual and 
the sensual in the course of its empirical execution. In one respect, the schema must be intellectual; in 
another, it must be sensible. But the schema does not have to be confounded with an image: 

 
If five points be set alongside one another, thus, . . . . . I have an image of the number five. But if, on 
the other hand, I think only a number in general, whether it be five or a hundred, this thought is rather 
the representation of a method whereby a multiplicity, for instance a thousand, may be represented 
in an image in conformity with a certain concept, than the image itself. For with such a number as a 
thousand the image can hardly be surveyed and compared with the concept. This representation of a 
universal procedure of imagination in providing an image for a concept, I entitle the schema of this 
concept. (Kant, 1781/2003, p. 182, A140/B179) 

 
In saying that the schema is a method or universal procedure, Kant meant that its execution can be 

repeated again and again. The schema entails, in fact, a principle of iteration that links, thereby, 
knowledge and action (Radford, 2005). 
 
Embodiment in Piaget’s Epistemology 
 

Considering himself a good Kantian, Piaget was not thrilled by Kant’s apriorism. Piaget agreed with 
Kant that the object of reason is to inform experience. However, he did not accept Kant’s idea that reason is 
something given a priori. The 28-year-old Piaget considered reason as constituted in experience: 
“Experience and reason are not two terms that we can isolate: Reason regulates experience and experience 
adapts reason.” (Piaget, 1924, p. 587). But how could reason emerge from experience? 

As we previously said, in Kant’s theory of knowing, there always was an unbridgeable gap between 



 

the sensible and the intelligible, with the result that the latter cannot be thought of as a generalization or 
an abstraction of the former. Consequently, Kant did not need a concept of abstraction. Piaget, by 
contrast, was in need of one that would account for the emergence of reason in experience. He resorted to 
the aforementioned concept of schema, a concept that Piaget adapted to his needs by putting an emphasis 
on abstracting actions. Piaget (1970) argued that in abstraction there are two possibilities: 

 
The first is that, when we act upon an object, our knowledge is derived from the object itself. This is 
the point of view of empiricism in general, and it is valid in the case of experimental or empirical 
knowledge for the most part. But there is a second possibility: when we are acting upon an object, we 
can also take into account the action itself, or operation if you will. . . . In this hypothesis the abstraction 
is drawn not from the object that is acted upon, but from the action itself. It seems to me that this is the basis 
of logical and mathematical abstractions. (p. 16) 

 

Piaget was eyeing the second kind of abstraction, which he termed reflective abstraction. 
Emancipated from its objects, reflective abstractions can be coordinated among themselves, for 
instance additively, temporally, and sequentially, giving rise to schemas that he interpreted as having 
“parallels in logical structures” (Piaget, 1970, p. 18) of a mathematical kind: 

 
Any given scheme in itself does not have a logical component, but schemes can be coordinated 
with one another, thus implying the general coordination of actions. These coordinations form a 
logic of actions that are the point of departure for the logical mathematical structures. (p. 42) [p. 
705 starts here] 
 

In Piaget’s account, what allows Jim to recognize the prism as a mathematical object is the logical 
coordination of a series of schemas that he has constructed over the course of many years: figural 
schemas resulting from perceptual and tactile sensorimotor activities in the preschool years, followed 
by schemas of invariability of magnitudes, which are acquired when a child is around 9 or 10 years old 
and characterized by relations of de-centration vis-à-vis the objects, schemas of comparison of forms, 
going from intrafigural to interfigural relations, and so forth (see, e.g., Piaget, 1973). The logical 
coordination of those varied schemas culminates in the generation of projective and Euclidean 
geometric relations out of which the prism appears to Jim as it is: a mathematical prism with its universal 
properties. 

Although Kant kept a separation of labor between the sensible and the intelligible, Piaget pleaded for 
a developmental relationship between the sensible and the intelligible. In Piaget’s epistemology, 
sensorimotor actions give rise to a practical intelligence (characterized by an as-yet incomplete 
logical-mathematical structure) that expands itself into conceptual knowledge. Thus, with the arrival 
of the “semiotic function”—a function that has “the ability to represent something by a sign or a 
symbol or another object” (Piaget, 1970, p. 45)—actions and gestures become conceptual 
representations. Yet, the crucial point to note here is that, for Piaget, the individual’s multimodal and 
embodied activity fades away. Intelligence becomes governed by logical-mathematical structures. The 
same is true of objects and artifacts. Reflective abstraction is abstraction emancipated from objects and 
artifacts. It converts actions into operations and operations into signs. But the allegedly structural nature 
of human thinking authorizes Piaget to remove artifacts, gestures, perception, and all embodied activity 



 

from the genetic analysis of the higher stages of intelligence. Piaget wrote: 

Reflective abstraction, which derives from the first concepts from the subject’s actions, transforms the 
latter into operations, and these operations can sooner or later be carried out symbolically without any 
further attention being paid to the objects which were in any case “any whatever” from the start. (Beth & 
Piaget 1966, p. 238) 

 

To sum up, Piaget emphasized the epistemological role of action and gesture. However, the emphasis 
on the operations’ structure left little room for a thematization of the content of the operations and for a 
serious consideration of the semiotic systems and the cultural artifacts that children use. Thus, although 
in his experiments Piaget cleverly introduced a formidable series of ad hoc objects (blocks, fluid 
containers, trains, cars, objects of different weight and form), the object that the hand holds in the schema is 
unimportant. It may be “any whatever” from the start, as he says in the last quotation. Verillon and 
Rabardel comment that the object submitted to the Piagetian subject is fundamentally nonhistorical and 
nonsocial: “its main property is that it is structured by physical laws. . . . The introduction of artifacts in 
classic Piagetian experiments is mainly due to their convenience for highlighting the invariant 
properties of reality” (Verillon & Rabardel, 1995, p. 80). 

Piaget’s recourse to structuralism (even if it was a dynamic one) introduced irresoluble tensions 
in his epistemology—tensions that are proportional, we may say, to the ones Kant introduced in his by 
having recourse to apriorism. In Kant the tension appears between the sensible and the intelligible; in 
Piaget the tension appears between structure and object. What allows Jim to over- come the gap 
between his situated experience of the physical prism and the mathematical one with all its universal 
and necessary properties is the alleged “parallel- ism” between cognitive and mathematical structures. In 
both epistemologies, nevertheless, the common denominator is that the activity of the developed mind 
tends, in the end, to be largely confined to abstract mental activity (Radford, 2005). 

In the following section we provide an overview of some perspectives on embodiment in 
mathematics education and examine how these approaches deal with the tensions identified above. 

 
Embodiment in Mathematics Education 
The Piagetian Legacy 

 
Piaget’s epistemology has had a significant impact on mathematics education and has also influenced 
the conception of embodiment. The influence is particularly patent in the so-called “process-object” 
theories; that is, theories that conceive of thinking as moving from the learner’s actions to 
operation knowledge structures. Two examples are APOS theory (Dubinsky, 2002; Dubinsky & 
McDonald, 2001) and the “three worlds of mathematics” (Tall, 2013). APOS stands for actions, 
processes, objects, and schemas. The “three worlds of mathematics” refers to: 

 
1. conceptual embodiment, which builds on perception and action to develop mental images that 

“become [p. 706 stars here] perfect mental entities” Tall, 2013, p. 16). For instance, “the 
number line develops in the embodied world from a physical line drawn with pencil and ruler to a 
‘perfect’ platonic construction that has length but no thickness” (Tall, 2008, p. 14); 

2. operational symbolism, which “grows out” of physical action into more or less flexible 
mathematical procedures; and 

3. axiomatic formalism, which “builds formal knowledge in axiomatic systems specified by set-



 

theoretic definition” (Tall, 2013, p. 16).   
 

One of the differences between APOS and the “three worlds of mathematics” perspective is the 
following. APOS theory focuses on the investigation of schema organization and genesis (Arnon et 
al., 2014); the “three worlds of mathematics” approach emphasizes the role of symbols and investigates 
the symbolic compression of processes according to whether the learner’s attention is focused on 
objects, procedures, or symbols (Gray & Tall, 1994; Tall et al., 2001). 

The “three worlds of mathematics” approach includes specific ideas about embodiment and 
mathematical thinking (de Lima & Tall, 2008; Tall, 2004, 2008, 2013; Tall & Mejia-Ramos, 2010; 
Watson & Tall, 2002). Thus, following a blend of the empiricist and rationalist philosophical traditions 
discussed in previous sections, Tall (2013) acknowledges that “mathematical thinking begins in 
human sensorimotor perception and action and is developed through language and symbolism” (p. 
11). The meaning of the term embodiment in the “three worlds of mathematics” approach is explained as 
some- thing that is “consistent with the colloquial notion of ‘giving a body’ to an abstract idea” (Tall, 
2004, p. 32). 

Notice that the notion that ideas exist in an abstract, nonembodied form that can be “expressed” or 
“receive a body”—in mental imagery (or another type of representation)—is consistent with 
dualistic theories that separate the realm of ideas from the realm of the material and the sensible. 
This theoretical commitment, that philosopher of mathematics David Bostock (2009, p. 232) calls 
“conceptualism,” has a clear implication for the manner in which methodological investigations are 
conducted. For instance, there is no need for an explicit analysis of the embodied cultural and 
conceptual sources of such things as symbols, mathematical definitions, or practices like proof. 
Instead, in the “three worlds of mathematics” approach these elements of thinking about and doing 
mathematics are analyzed from a taken-as-given world of mathematics and mathematicians. Real 
numbers, for example, are analyzed by contrasting their meaning and use within the three 
hierarchical worlds mentioned above: embodied, illustrated by a finger tracing “continuous motion” 
along a number line; symbolic, accompanied by “√2 = 1.4142 . . .”; and formal, with a definition of a 
complete ordered field. Tall (2008) explains the hierarchical relationship as follows: 

 
Physically the number line can be traced with a finger and, as the finger passes from 1 to 2, it feels as if it 
goes through all the points in between. But when this is represented as decimals, each decimal expansion 
is a different point (except for the difficult case of recurring nines) and so it does not seem possible to 
imagine running through all the points between 1 and 2 in a finite time . . . . Formally, the real numbers 
R is an ordered field satisfying the completeness axiom. This involves entering a completely different 
world where addition is no longer defined by the algorithms of counting or decimal addition, instead 
it is simply asserted that for each pair of real numbers a, b, there is a third real number call[ed] the 
sum of a and b and denoted by a+b. (pp. 14–15) 

 
To sum up, APOS theory offers a refined perspective to investigate the genesis of schemas, 

whereas the “three world of mathematics” approach offers a powerful framework to study the 
increasing transformation and compression of symbolism starting from an embodied level and moving 
toward flexible ways of using symbols and notations. Embodiment, nonetheless, remains a general 
category; the fate of embodied actions is to be superseded by flexible actions with symbols. 

 



 

Multimodality 
 
In other approaches to embodiment, the variety of embodied modalities to which students and 
teachers resort comes to the forefront. In particular, there is generally a stronger commitment to the 
essential role of the body even in abstract thought. These approaches may be termed multimodal. The 
term “multimodality” entered the mathematics education field after being borrowed from external 
research domains, ranging from neuroscience (for example, see Gallese & Lakoff, 2005) to 
communication studies (Kress, 2001, 2010). As Edwards and Robutti note (2014, p. 7), the “meanings 
used in these different fields of study are not mutually exclusive but intersect and complement each other.” In 
mathematics education, the term multimodality is often used to underline both the relevance and mutual 
coexistence of a range of different cognitive, physical, and sensuous (e.g., perceptual, aural, tactile) 
modalities or resources [p. 707 starts here] playing a role in teaching-learning processes and, more 
broadly, in the production of mathematical meanings: “These resources or modalities include both oral 
and written symbolic communication as well as drawing, gesture, the manipulation of physical and 
electronic artifacts, and various kinds of bodily motion” (Radford, Edwards, & Arzarello, 2009, pp. 91–
92). 

An example of a multimodal approach is provided by the work of Abrahamson (2014), in what he 
terms “embodied design.” This process involves the creation of physical tasks and computational 
environments that allow “proactive multimodal sensorimotor interaction” (Hutto, Kirchhoff, & 
Abrahamson, 2015, p. 375). For example, the Mathematical Imagery Trainer (MIT) allows the learner 
to engage kinesthetically and perceptually with the idea of proportionality. The student can change 
the color of a computer screen only when he holds one of his hands twice as far from the table as his other 
and maintains this ratio while moving his hands up or down. Thus, the introduction to proportionality is 
fully embodied in “non-symbolic perceptuomotor schemas” (Abrahamson, 2014, p. 1). Through the use 
of language, gesture, and, eventually, written inscriptions, the learner is assisted in reconciling his naïve, 
embodied, enacted experiences with more formal mathematical constructions. 

How is embodiment understood here? What is the role of the students’ gestures? Embodiment 
appears as a faculty of the body that has a constructive function in that it helps the creation of 
mathematical constructs in the course of learning (Alibali & Nathan, 2012; McNeill, 2000, 2005). 
 
Semiotic Bundles 

 
Another example of the multimodal approach has been developed by Arzarello and collaborators. 
Drawing on Vygotsky’s work and neuroscience research, they stress the importance of the 
multimodal character of the students’ semiotic activity in teaching and learning contexts. Here, the 
emphasis is not on schemas, as is the case of the Piagetian-influenced process-object theories 
mentioned before, but on the evolution of signs (Arzarello, 2006). In accordance with Vygotsky’s 
early concept of sign, Arzarello refers to signs as mediating entities of thinking, much as tools are 
conceived of as mediating entities of labor. Within this context, gestures and other embodied resources 
to which students and teachers resort become signs, even if they do not present relatively formal rules 
of production as do language and algebraic and Cartesian graphic symbolism, through explicit 
grammatical or syntactic rules. In Arzarello’s approach multimodality occurs through relationships 
between sets of signs (e.g., the set of speech language, the set of gestures, the set of algebraic symbols), 
produced and transformed according to their (formal or informal) nature and constituting a “semiotic 
bundle.” A semiotic bundle is precisely formed by “i) A collection of semi- otic sets. ii) A set of 
relationships between the signs” (Arzarello, 2006, p. 281). 

As we can see, the semiotic bundle considers the semiotic resources in a unifying manner, 



 

allowing for the description of learning through the evolution of signs as they are produced in the 
classroom by all participants. Arzarello, Paola, Robutti, and Sabena (2009) explain, 

 
Typically, a semiotic bundle is made of the signs that are produced by a student or by a group of students 
while solving a problem and/or discussing a mathematical question. Possibly the teacher too 
participates to this production and so the semiotic bundle may include also the signs produced by the 
teacher. (p. 100) 

 
Due to the very general nature of the sign that is considered, the semiotic bundle includes the 

classical systems of signs (Ernest, 2006) or registers of represen- tation (Duval, 2006) as particular 
cases, but also gestures and embodied signs. Using the semiotic bundle, two 
kindsofinterrelatedanalysiscanbedone:(1) a synchronic analysis, which focuses on the relationships 
between different signs in a certain moment, and (2) a diachronic analysis, which focuses on the 
evolution of signs (and the evolutions of the relationships between signs). Syn- chronic analysis 
allows for taking a kind of “picture” of the students’ and teacher’s mathematical activity from a 
semiotic point of view; diachronic analysis allows for obtaining a sort of multimodal semiotic 
“movie” of such an activity. 

An example of a phenomenon detected with the synchronic view is the gesture-speech relationship in 
Jim’s activity as described in the initial vignette. In this brief example, gestures and words cannot be 
considered separate because the meaning of one set completes the meaning of the other one (McNeill, 
2000). As pointed out above, we can see for instance in line 3 of the transcript that gestures are co-timed 
with speech, and the sensuous aspects (touching, gazes) are deeply intermingled with speech to jointly 
express a reasoning: they co-live in the semiotic bundle. 

The diachronic analysis is at the heart of the analysis carried out within the semiotic bundle 
perspective [p. 708 starts here] because it allows the researcher to determine whether and how an 
evolution of meanings occurred during the students’ activity. For instance, going on with the discus- sion 
with the teacher and his mates, Jim draws on a sheet of paper a representation of a prism with a pentagonal 
base and says (Figure 26.2, Picture 1): 

 
Jim: An edge, uh, um, every edge [He slips his finger on the edge drawn on the sheet.] is a side face 

[Figure 26.2, Picture 2] so it has five lateral faces. 
 

So Jim produces a written diagram, in which we recognize (a variation of) the artifact he had interacted 
with, performs (a variation of) the gesture he had produced, and produces (a variation of) the reasoning 
he had done before. The variation consists both in the number of edges (5 for a pentagon and no 
longer 6 for a hexagon) and in the signs with which he interacts (a drawing and not the plastic artifact): 
the semiotic bundle has evolved. The changes are a possible hint of the generality with which Jim is 
reasoning, which, in turn, is embodied in the semiotic bundle relationships and evolution. 

Looking at the evolution of the students’ signs, the teacher can gain clues with respect to the 
students’ understanding: the multimodal aspects of the activity can therefore help her decide whether or 
not to intervene in order to support the students. A didactic phenomenon reported in the literature is the 
so-called “semiotic game” (Arzarello et al., 2009), which happens when the teacher attunes to a certain 



 

semiotic set employed by the students (typically imitating a certain gesture) and couples it with 
another set (typically speech words or written mathematical symbols) to build a connection between 
personal and shared mathematical meanings. Therefore, semiotic games constitute an important strategy 
in the process of the appropriation of the culturally shared meaning of signs. 

 

 
Picture 1 Picture 2 

 
Figure 26.2. Example of diachronic analysis: Diagram and gesture produced later by 
Jim. 

 
Enactivism 

 
The origins of enactivism are in the biological roots of humans as described in the work of Maturana and 
Varela (1992) and in the phenomenological ideas of Merleau- Ponty(1945/1962). Enactivism shares 
with many embodied theories a critique of the Cartesian dualistic view of object and subject, the 
intellectual and the sensual, mind and body, and cognition and reality. It attempts to offer a middle view 
of the rationalist and subjectivist epistemological traditions that we outlined before. From an 
enactivist viewpoint, the world does not have pregiven properties that would exist independently 
from the human cognitive system. Nor can the cognitive system be thought of as projecting its own 
world—a world whose reality would be “a reflection of internal laws of the sys- tem” (Varela, 
Thompson, & Rosch, 1991, p. 172). Enactivists object to the objectivist rationalist view by arguing that 
cognitive categories are experiential. This is why, enactivists argue, the function of cognition is not 
to rep- resent the world: “cognition does not represent a world, it creates one” (Reid & Mgombelo, 
2015, p. 176). At the same time, enactivists object to the subjectivist view by arguing that human 
cognitive categories belong to their shared biological and cultural world. Against the objectivist and 
subjectivist views they claim that the world out there and the individual “specify each other” (p. 172). 
“Our intention,” Varela, Thompson, and Rosch say, “is to bypass entirely this logical geography of 
inner versus outer by studying cognition not as recovery or projection but as embodied action” (p. 72). 
They explain the idea of embodied action as follows: 

 
By using the term embodied we mean to highlight two points: first, that cognition depends upon the 
kinds of experience that come from having a body with various sensorimotor capacities, and 
second, that these individual sensorimotor capacities are themselves embedded in a more 
encompassing biological, psychological, and cultural context. By using the term action we mean to 
emphasize once again that sensory and motor processes, perception and action, are fundamentally 
inseparable in lived cognition. Indeed, the two are not merely contingently linked in individuals; they 
have also evolved together. (Varela et al., 1991, pp. 172–173) 



 

 
Within this perspective, knowing and perception are framed as active processes occurring directly 

through the interaction between the cognizing subject and the [p. 709 starts here] environment. 
Perception is determined by the structures of the perceiver, which are to be considered operation- ally 
closed and autonomous. Consequently, learning is conceptualized as a process of adaptation and 
restructuration caused by interactions within the environment, with learner and environment 
forming a complex dynamic system (a structural coupling). In their 1996 article “Cognition, Co-
Emergence, Curriculum,” Davis, Sumara, and Kieren speak of “the learner-in-her/his environment” 
and underline that in enactivist views, “context is not merely a place which contains the student; the 
student literally is part of the context” (quoted in Reid & Mgombelo, 2015, p. 177).  

 
 

Phenomenological Approaches 
 

Drawing on experimental and developmental psychology, cognitive science, and neuroscience, 
Nemirovsky and colleagues propose, like enactivism, a nondualistic embodied perspective on 
mathematical thinking and learning. One of the particularities of their approach is its 
phenomenological orientation and the important role ascribed to imagination and perceptuomotor 
integration in the learner’s experience (Nemirovsky & Ferrara, 2009; Nemirovsky, Kelton, & 
Rhodehamel, 2013; Nemirovsky, Rasmussen, Sweeney, & Wawro, 2012). Perceptuomotor 
integration consists of a deep intertwining of perceptual and motor aspects of tool use or body 
movements.  

 
Although in other phenomenological approaches (e.g., those drawing on Husserl’s work) the 

primacy of senses is attributed to perception, in the radical embodied material phenomenology that 
Roth and colleagues propose, touch is the main sense. It is around touch that the sensations from the 
eyes and the other organs are coordinated, “especially with touch from the hands” (Roth, 2010, p. 
11). 
Roth discusses the example of Chris, a grade 2 student, comparing a material cube and a pizza box. 
The teacher asks what the pizza box would have to have to make it a cube. Prompted by the question, 
Chris moves [p.710 starts here] his hand along two edges of the pizza box. He utters the word “square” 
while pointing to the two sides again. Roth (2010) explains: 

 
With the movements and coordination of movements of eyes and hands, the world begins to emerge 
from touch. Chris’s present experience is based on the coordination of hands with eyes, so that seeing 
the pizza box and moving the hand along one edge, then another edge, is but a realization of the 
coordination of hands and eyes and the concrete realization of the ability of moving them. (p. 11) 

 
There are certain converging points between the radical embodied materialist phenomenology 

that Roth advocates and the enactivist approach previously described, but they do not coincide. A 
central difference is the immanent viewpoint that the materialist epistemology adopts: the 



 

existence of an original passivity that living organisms enjoy and which provides them with the 
possibility of affecting something and to be simultaneously affected—in the pizza box example, this 
immanence expresses itself in the preconceptual and preintentional movement of Chris’s hand along the 
edge of the pizza box and, later on, a material cube: “It is the flesh, with its capacity of tact (i.e., sense of 
touch), con- tact (i.e., touched and being touched), and contingency that is the ground of all senses, 
sense-making efforts, and, therefore, knowledge” (Roth, 2010, p. 13) 

But there is more to the difference between the radical 

embodied materialist phenomenology and enactivism. Roth (2010) expresses it as follows: 
 

Varela et al. (1991) propose to look for knowledge at the “interface between body, society, and 
culture” (p. 179). In the position articulated here there is no interface: mind is in society and culture 
as much as society and culture are in the mind. Similar positions can be found in activity theory from 
L. S. Vygotsky via A. N. Leont’ev to the present day. Maturana and Varela (1980) take societies to 
be “systems of coupled human beings” (p. 118), whereas the position here is the converse: the 
specifically human being is a result of society rather than preceding coupling or, in activity theoretic 
terms, there is mind because there is society. (p. 16; emphasis in original) 

 
Inclusive Materialism 

 
De Freitas and Sinclair (2014) draw on the work of Barad (2007), Châtelet (2000), and Deleuze 
(1968/1994) to articulate an approach that they term inclusive materialism. Noting that theories of 
embodiment often remain focused on the individual learner and conceive of mathematical concepts as 
passive entities, they argue for a reconceptualization of the body that stretches conventional concepts. 
They suggest conceiving of the body as an assemblage “of human and non-human components” (2014, p. 
25)—a heterogeneous assemblage of organic matter, concepts, tools, signs, diagrams, and objects 
(2014, p. 225). 

This materialist ontological stance opens a space to talk of the human body as something that is 
more than what goes under the skin. It also makes room to talk of the body of mathematics and the 
body of the tools one uses in mathematical activity. “The new materialism we pro- pose,” they say, 
“aims to embrace the ‘body’ of mathematics as that which forms an assemblage with the body of the 
mathematician, as well as the body of her tools/ symbols/diagrams” (de Freitas & Sinclair, 2013, p. 454). 

The idea of the body that de Freitas and Sinclair pro- pose moves the discussion away from 
intentionality as one of the chief characteristics of individuals’ actions and focuses on the field of 
agents and agency. As they note, “our aim here is to focus less on human intention and more on 
distributed agency. We want to problematize some of the ontological tenets underpinning particular 
conceptions of the human body as the principal administrator of its own participation” (2014, p. 19). 

Although to be an agent and to be endowed with agency have usually been considered attributes 
of humans, in inclusive materialism, these attributes are not restricted to humans only. In this 
perspective, it makes sense to talk about matter as agentic entities. Thus, referring to Roth’s (2010) 
analysis of the cube discussed above, de Freitas and Sinclair contend that “the matter of the cube and the 
matter of the mathematical concepts are also agents” (2014, p. 24). 

Inclusive materialism stretches not only the concept of the body but also the concept of agency. 



 

The concept of agency must be rethought, because inclusive materialism problematizes the premise 
that any one part of the assemblage is the source of action, intention or will. Such problematizing will 
mean revising notions such as student agency, as well as advocacy or interventions for improving or 
sup- porting student agency. We will need to reconceive agency as operating within the relations of an 
ever-changing assemblage. (de Freitas & Sinclair, 2014, p. 33) 

 
And this is precisely what Roth’s (2010) analysis of the cube discussed above does not address 

adequately. Indeed, de Freitas and Sinclair (2014) argue that Roth’s analysis fails to notice that the cube is 
not an inert object but rather an animated entity in “intra-action” with the [p. 711 starts here] student 
and the mathematical concept in a process of becoming: 

 
While Roth’s cube example sheds light on the role of the body in learning, the analysis fails to do justice 
to the materiality of either the cube or the mathematics; that is to say, it fails to reckon with the way in 
which the cube is itself becoming-cube through its encounter with the child, shifting its own boundaries in 
this process of becoming. Roth treats the nonhuman material in this encounter as passive and inert. . . . 
Moreover, the mathematical concept of cube remains untouched and untroubled by the encounter, as 
though it were indeed an immaterial and inflexible concept that happens to be some- how manifest in 
this particular instance. (pp. 23–24) 

 
In general, what de Freitas and Sinclair do not see in the current literature on the material aspects of 

mathematics is “how mathematical concepts partake of the material in operative, agential ways” (p. 
40). 

They locate the “forceful, animate, mobile, alive and material” (de Freitas & Sinclair, 2014, p. 226) 
nature of mathematical concepts in a conceptual category called the virtual. To understand the 
meaning of the virtual and virtuality, we need to go back to Deleuze’s concept of the virtual. Deleuze 
(1968/1994, p. 209) contended that “the virtual must be defined as strictly a part of the real object—
as though the object had one part of itself in the virtual into which it is plunged as though into an 
objective dimension.” This is why “Every object is double without it being the case that the two halves 
resemble one another, one being a virtual image and the other an actual image” (p. 209). Inclusive 
materialism expands this idea to mathematical objects as well. As a result, “mathematics cannot be 
divorced from ‘sensible matter,’ and it is the virtual dimension of this matter that animates the 
mathematical concept. Mathematical entities are thus material objects with virtual and actual 
dimensions” (de Freitas & Sinclair, 2014, pp. 201–202; emphasis in original). 

An object (mathematical or other) is hence a double object, made up of an actual image and a virtual 
one, and it is in the virtual one that we find the mobility of the concept. Considered from this posthumanist 
account, traditional teaching of mathematics does not attend to the virtual; it focuses on the logical. Now, 
the virtual, as considered in this approach, can be summoned or invoked. The virtual is something that can 
be “provoked,” “recovered,” “unleashed,” and “conjured,” but also “massacred” (de Freitas & Sinclair, 
2014, p. 213). Gestures, diagrams, and mathematical notations are considered as “invoking a dynamic 
process of excavation that conjures the virtual in sensible matter” (2014, p. 67). 

In the rest of the chapter we discuss two other approaches to embodiment in mathematics 
education. The first one comes from cultural-historical cultural theory and its dialectical materialist 
philosophy and the second one from cognitive linguistics. 



 

 
Dialectical Materialism 

 
Like some of the embodiment approaches discussed previously, dialectical materialism (Ilyenkov, 1982; 

Lefebvre, 2009) emphasizes the role of the body, matter, and the material world in knowing and 
becoming. Yet, material objects (e.g., the cube in Roth’s, 2010, example mentioned above or the hexagonal 
prism alluded to in our introduction) are not conceived of as agentic entities. But neither are they 
considered the mere stuff that we touch with our hands, hear with our ears, or perceive with our eyes. They 
are considered bearers of sedimented human labor. That is, they are bearers of human intelligence and 
specific historical forms of human production that affect, in a definite way, the manner in which we 
come to know about the world. Thus, from the viewpoint of dialectical materialism, the cube that Chris 
holds in his hand in Roth’s (2010) example and the hexagon that Jim holds in his (see Figure 26.1 in 
the introduction) are not conceptually neutral. These objects are bearers of a historical intelligence that 
has been produced and refined in the course of cultural development, providing the students with 
potential conceptual geometric categories through which they sort out and make sense of the world. 
The made-in-China plastic hexagon that Jim holds in his hand already intimates a way of seeing the 
world. It is a cultural artifact already embedded in a particular historical form of industry in a society of 
massive schooling and specific conveyed forms of knowing that are substantially different from those of 
Ancient Greece, the Middle Ages, or the pre-Columbian Maya cultures, for instance. 

Dialectical materialism offers a conception of knowledge and the knowing subject as cultural, historical 
entities entangled in, and emerging from, material human activity (Leont’ev, 1978; Mikhailov, 1980). 
Within this perspective, the human subject is not a mere body. The human subject is the unique 
individuation of an ensemble of culturally and historically constituted ethical, social, political, and 
economic relations. As unique individuation of societal relations, the human subject is rather an entity in 
perpetual becoming—an unfolding and endless social, cultural, historical, material, and ideal (i.e., non- 
material) project of life. The human subject is something always resisting the identity with itself, I ≠ I. 
[p. 712 starts here] 

 
Radford (2009b, 2013, 2014b) has explored this line of theorizing the human subject to revisit 
embodiment and to consider cognition, sense, sensation, and matter in a new light. Cognition is 
conceptualized simultaneously as conceptual, embodied, and material. As a result, cognition is not seen 
through “conceptualist lenses”— that is, as something about ideas occurring in the head (Bostock 
2009; Stevens, 2012). Cognition, the body, sense, sensation, and matter are considered kinds of a 
historical nature intertwined with each other. This theoretical approach, which Radford (2014b) terms 
“sensuous cognition,” rests on a specific historical understanding of sense, sensation, materiality, and the 
conceptual realm. Within this theoretical perspective, our cognitive domain can only be understood as a 
culturally and historically constituted sentient form of creatively responding, acting, feeling, 
imagining, transforming, and making sense of the world. (p. 350)  

As a result, the human senses are not conceived of as merely part of our phylogenetic evolved 
biological equipment. Perception, for instance, instead of being considered a sensorial synthesis 
carried out by a contemplative Cartesian subject (de Freitas, 2016) is considered a “highly evolved and 
specific mode of human action or praxis . . . [whose] characterization as only biological or physiological . . 
. is inadequate” (Wartofsky, 1979, 
p. 189). Within the sensuous cognition approach, the biological orienting-adjusting reactions with 



 

which we are born undergo cultural transformation. Our sensorial- perceptual organs are converted into 
historically constituted complex forms of sensing (e.g., ways of seeing, touching, hearing, and tasting), 
leading to specific forms of human development (Radford, 2014b). The cultural transformation of the 
senses and their role in knowing can only be understood in the context of the “insertion of the individuals in 
that specific region of the world that is society, that is to say the set of connections by which the individuals 
come to exist with one another and with the world” (Fischbach, 2014, p. 8; our translation). In dialectic 
materialism, the name of this dynamic continuously unfolding and changing process of insertion of 
individuals in society is activity—material joint-activity. 

To illustrate these ideas Radford (2014a) discusses an example that comes from a regular grade 2 
class of 7- to 8-year-old students. In this example, the students worked on the sequence shown in Figure 
26.3. 

The students were invited to draw Terms 5 and 6. In subsequent questions they were invited to find 
out the number of squares in remote terms, such as Terms 12 and 25. 

Radford notes that mathematicians often tend to see the terms of the sequence as made up of two 
rows. Then they scan the rows for functional clues between the number of the term and the number 
of squares on one row and the other. Mathematicians quickly realize that there are as many squares on 
the bottom row as the number of the term, and that there is one more square on the top row than the 
number of the term. They conclude that the general formula is y = n + n + 1, that is, y = 2n + 1. Or they 
notice the recursive relationship Tn � 1 = Tn + 2 (an arithmetic sequence where the repeated addition is 
transformed into a multiplication). All this happens so quickly that it seems that the two rows and the 
recursive relationship stare us “in the face,” to borrow an expression from Wartofsky (1968, p. 420). 
Yet, as Figure 26.4 intimates, things do not necessarily go that way for young students. Figure 26.4 
shows two paradigmatic answers provided by two students: Carlos and James. 

Figure 26.4, middle, shows in the interior of the squares the points left by the hand-pen counting 
device. These points are traces of Carlos’s counting, which was also supported by uttered number 
names and a sustained perceptual activity. Against conceptualist trends, Radford (2009b) argues 
that “[T]hinking [is] not occur[ring] solely in the head but also in and through a sophisticated semiotic 
coordination of speech, body, gestures, symbols and tools” (p. 111). [p. 713 starts here] 
 

 
Term 1 Term 2 Term 3 Term 4 

Figure 26.3. The first terms of a sequence that grade 2 students investigated in an 
algebra lesson. From “The Progressive Development of Early Embodied Algebraic 

  

 



 

Thinking” by L. Radford, 2014, Mathematics Education Research Journal, 26(2), p. 262. 
Figure  26.4.  Left, Carlos, counting aloud, points sequentially to the squares in the top 
row of Term 3. Middle, Carlos’s  drawing of Term 5. Right: James’s drawing of Term 5. 
From “The Progressive Development of Early Embodied Algebraic Thinking” by L. Radford, 
2014, Mathematics Education Research Journal, 26(2), p. 263. 
 

In the sensuous cognition approach, the students’ answers shown in Figure 26.4 are not assumed to 
mean that the students do not seek help in the spatial configuration of the terms of the sequence. As 
shown in Figure 26.4, left, Carlos meticulously points to the squares in the top row, one after the other in 
an orderly manner, and, once he finishes counting them, he starts counting the squares in the bottom row. 
However, the spatial configuration of the terms appears as an aid to perform a consecutive counting 
process only. The leading activity is centered on numerosity. 

There is nothing wrong, of course, with the consecutive counting approach, except perhaps that it 
may reveal itself as very limiting to imagine and investigate remote terms, as it turned out to be in the 
case of this lesson. The students see the terms, but they do not necessarily see them as made up of two 
rows. To see the terms as made up of two rows already requires a kind of theoretical seeing, an 
algebraic way of perceiving. The eye has yet to be transformed from an organ of quotidian perception 
into a theoretician (Radford, 2010). This is why in the sensuous cognition approach, coming to know in 
a culturally and historically constituted form of knowing goes hand in hand with a transformation of 
our senses. We think (practically and theoretically) with and through our senses. This is why, within the 
sensuous cognition approach, perception, tactility, gestures, sounds, movement, and material objects do 
not mediate thinking. They are part of it. 

Radford (2010) documents a key moment in the trans- formation of the senses of the grade 2 students 
mentioned above. Working with a small group of three students, and after the students had drawn Terms 5 
and 6 in ways similar to those shown in Figure 26.5, the teacher engaged the students in an exploration of the 
patterns in which the rows come to the fore (see Figure 26.5). 

The teacher says, “We will just look at the squares that are on the bottom.” At the same time, to 
visually emphasize the object of attention and intention, the teacher makes three consecutive 
sliding gestures, each one going from the bottom row of Term 1 to the bot- tom row of Term 4. 
Figure 26.5, left, shows the beginning of the first sliding gesture. The teacher continues: “Only the 
ones on the bottom. Not the ones that are on the top. In Term 1 [she points with her two index fingers to 
the bottom row of Term 1; see Figure 26.5, right] how many [squares] are there?” Pointing, one of the 
students answers: “one.” The teacher and the students continue rhythmically exploring the bottom 
row of Terms 2, 3, and 4, and also, through gestures and words, the non- perceptually accessible Terms 
5, 6, 7, and 8. Then, they turn to the top row. Imagining the nonperceptually accessible terms is a 
fully sensuous process out of which an algebraic sense of the relations between the number of the terms 
and the number of squares in their bottom and top rows starts to emerge. Through the complex 
coordination of gestures, words, figures, and rhythm, [p. 714 starts here] the students start noticing 
a culturally and historically constituted theoretical way of seeing and gesturing. 



 

  
Figure 26.5. Left, the teacher pointing to the bottom rows. Right, the students and the 
teacher counting together. From “Perceiving With the Eyes and With the Hands” by L. 
Radford, 2013, RIPEM, 3(1), p. 64.  
 
The students start discerning a new way of perceiving out of which an algebraic numerical-spatial structure 
becomes apparent and can be now applied to other terms of the sequence that are not in the students’ 
perceptual field. 

Within the sensuous cognition theoretical approach, the segment of the material and sensuous 
classroom joint activity out of which a mathematical form of thinking (in this example, an algebraic form 
of thinking about sequences) progressively appears in sensible conscious- ness is called a semiotic node 
(Radford, 2009a; Radford, Demers, Guzmán, & Cerulli, 2003). A semiotic node is not a set of signs. It 
is a segment of joint activity that usually includes a complex coordination of various sensorial and 
semiotic registers that the students and teachers mobilize in order to notice something (e.g., a 
mathematical structure or a mathematical concept at work). In the previous example, when the students are 
counting along with the teacher, the semiotic node includes the signs on the activity sheet, the 
teacher’s sequence of gestures, the words that the teacher and the students pronounce simultaneously, 
the coordinated perception of the teacher and the students, the corporeal position of the students and the 
teacher, and rhythm as an encompassing sign that links gestures, perception, speech, and symbols. 

The next day, the emerging awareness of the algebraic structure leads the students to suggest that the 
number of squares in Term 12 is “12 plus 12, plus 1.” The structure of the semiotic node has been 
transformed: although rhythm still appears there in the prosodic flow of the utterance, it appears in a 
shorter and more direct manner. Also, the spatial deictic terms, such as “top” and “bottom,” have 
disappeared, as have the pointing gestures. Radford (2008) calls this phenomenon a semiotic 
contraction, which results from making a choice between what counts as relevant and irrelevant, what 
needs to be said and not said, leading “to a contraction of expression” that is a material token of a “deeper 
level of conscious- ness and intelligibility” (2008, p. 90). 

The concept of semiotic node is consistent with the idea of thinking featured in the sensuous 
cognition approach. Thinking is indeed considered to be made up of material and ideational components 
including (inner and outer) speech, sensuous forms of imagination, gestures, tactility, and actual actions 
with cultural artifacts. Now, conceiving of thinking as a sensuous, material process that resorts to the 
body and material culture does not mean that thinking is a collection of items. Rather, thinking is a 
dynamic unity of material and ideal components (Rieber & Carton, 1987). Thinking is something 
moving and unfolding—a movement of multiple corporeal, linguistic, symbolic, gestural, tactile, 
perceptual, physical, aesthetic, and emotional tonalities and positions. 



 

Within the sensuous cognition approach, the investigation of semiotic nodes and their semiotic 
contraction is a crucial point in understanding teaching-learning processes. From a methodological 
viewpoint, the problem is to understand how, in classroom activity, the diverse sensorial modalities, the 
semiotic signs (linguistic, writ- ten symbols, diagrams, etc.), and cultural artifacts are related, 
coordinated, and subsumed into a new sensuous dynamic unity (Radford, 2012). 

In the next section, we turn to a different conception of embodiment that comes from a contemporary 
approach to meaning making—cognitive linguistics—that has had a significant impact on conceptions of 
embodiment within mathematics education. 

 
Cognitive Linguistics 

 
The discipline of cognitive linguistics is based on the theory of embodied cognition, which, like 
enactivism, holds that the shared experience of existing as biological organisms who are born and 
grow up in a specific physical (and cultural) world provides the foundation for human language, 
thought, and meaning (Gibbs, 2006; Johnson, 1987, 2007; Lakoff & Johnson, 1999; Varela et al., 1991). 
More specifically, proponents of cognitive linguistics suggest that the relationship between 
elements of language and their referents is, in general, not formal and arbitrary, but rather that the 
relationship is a close linkage between action in the world, language, thought, and meaning 
(Fauconnier, 1997; Fauconnier & Lakoff, 2009; Fauconnier & Sweetser, 1996; Fauconnier & Turner, 
2002; Lakoff, 1987; Lakoff & Johnson, 1980, 1999). For example, if we look back at the opening 
vignette, our fifth-grade student, Jim, uses a combination of spoken words and gestures to justify his 
claim that “we can deduce the number of faces if we know the name of the prism.” According to a 
cognitive linguistic frame- work, neither Jim’s language nor his bodily actions are unrelated to the 
way he thinks about the situation. When he refers to the “faces” of the prism, he is using a term that did 
not develop arbitrarily within the mathematical community, but rather because of its association with 
the human face, a somewhat planar feature that we present and respond to in the social world. 
Thus, our physical form serves as a source for naming a mathematical entity, in a nonarbitrary way. 
[p. 715 starts here] 

Similarly, the circular gesture Jim uses to physically encompass all the faces of the prism is related to 
what cognitive linguistics calls the image schema of containment (Johnson, 1987; Lakoff, 1987; 
Lakoff& Núñez, 2000; Talmy, 2000). Image schemas are “recurrent, stable pat- terns of sensorimotor 
experience . . . [that] preserve the topological structure of the perceptual whole . . . having internal 
structures that give rise to constrained inferences” (Johnson, 2007, p. 144). The containment image 
schema arises from the child’s physical experience of filling and emptying containers, experience which 
builds the notions of “inside,” “outside,” and “edge” or “bound- ary.” This image schema allows Jim to 
think about the faces of the prism as members of a collection that can be counted, and his circular gesture 
indicates the boundary of the collection. The containment image schema pro- vides the foundation for 
many later understandings, both within and outside mathematics, including set member- ship, the domain 
and range of a function, and bounded regions (Lakoff & Núñez, 2000; Núñez, 2000). 

Image schemas can help account for the fact that many mathematical expressions and some 
symbols evoke space and spatial relationships, even when the subject is not geometry (e.g., “limit,” 
“field,” “onto,” ⇔). When we talk about “balancing” an equation, or “sup- porting” an argument, 
from the perspective of cognitive linguistics, this is comprehensible because of our shared experience 
of balancing and supporting our bodies (as well as building blocks, bicycles, and so on). 



 

An image schema can serve as the source domain for a powerful mechanism in cognitive linguistics, 
conceptual metaphor. Conceptual metaphors are unconscious mappings between two conceptual 
domains, in which [p. 716 starts here] the inferential structure of the first domain is mapped onto the 
second (Johnson, 1987; Lakoff, 1987, 1992; Lakoff & Johnson, 1980, 1999). As an example, a 
common image structure, source-path-goal, is based on our physical experience of traveling from 
one location (the source) to another (the goal), along a given path (Johnson, 1987). This image 
schema can be found in multiple areas of mathematics, from addition using the number line (Lakoff & 
Núñez, 2000) to functions and graphing (Bazzini, 2001; Ferrara, 2003, 2014; Font, Bolite, & 
Acevedo, 2010) to continuity (Núñez, Edwards, & Matos, 1999). It can even provide the source domain for 
understanding proof, a concept with no obvious relation- ship to movement through space. Figure 26.6 
illustrates the metaphorical mapping from the internal structure of the source-path-goal schema to the 
explicit form of a mathematical proof (Edwards, 2010). 

Empirical support for this metaphor can be found in both the speech and gestures of a doctoral student 
talking about mathematical proof, shown in Figure 26.7 (Edwards, 2010): 
Student: ’cause you start figuring out, I’m starting at point a and ending up at point b. 
There’s gonna be some road//where does it go through? And can I show that I can get 
through there? (bold indicates speech coordinated with gestures). (Edwards, 2010, p. 333) 

The source domain for a conceptual metaphor can be drawn from experience in the physical world 
(in which case it is called a grounding metaphor), or it can be drawn from an existing conceptualization 
(creating a linking metaphor, which can yield more abstract concepts— connecting, for example, 
subdomains within mathematics; Lakoff & Núñez, 2000; Núñez, 2008). 

 

                     Source Domain: Journey                  Target Domain: Proof 
 

 

 
Figure 26.6. Conceptual metaphor “a proof is a journey.” Adapted from “Doctoral 
Students, Embodied Discourse and Proof” by L. D. Edwards, in M. M. F. Pinto and T. F.  

 
Kawasaki (Eds.), Proceedings of the 34th Conference of the International Group for the 
Psychology of Mathematics Education (Vol. 2), 2010, Belo Horizonte, Brazil: PME. 



 

Figure 26.7. Gesture  indicating  the  source-path-goal image schema. Adapted from 
“Doctoral Students, Embodied Discourse and Proof” by L. D. Edwards, in M. M. F. Pinto and 
T. F. Kawasaki (Eds.), Proceedings of the 34th Conference of the International Group for the Psychology 
of Mathematics Education (Vol. 2), 2010, Belo Horizonte, Brazil: PME. 

 
An example of conceptual metaphor at a more sophisticated level of mathematics can be found in an 
analysis of undergraduate students’ metaphors for limits. Oehrtman (2009) used interviews and 
written assignments to ask students in an introductory calculus class about limits. He identified five 
clusters of metaphors for limits used consistently by his students: “(a) a collapse in dimension, (b) 
approximation and error analyses, (c) proximity in a space of point-locations,(d) a small physical scale 
beyond which nothing exists, and (e) the treatment of infinity as a number” (p. 396). For example, students 
who were asked about the Taylor series for sin x used the “proximity” or “physical closeness” metaphor 
in statements such as, “the closer the polynomials will wrap themselves [emphasis added] around the 
original function” and “the polynomial becomes more and more loosely fitted [emphasis added] 
around the curve” (p. 417). 

The examples above illustrate the use of the theory of conceptual metaphor to analyze specific 
mathematical topics and concepts; however, there is a more fundamental metaphor underlying 
mathematical discourse, one which may have contributed to perennial arguments over the ontological 
status of mathematics. This is the metaphor used when talking about mathematical entities as if they had 
a physical existence, that is, as objects (Font, Godino, Planas, & Acevedo, 2009; Lakoff & Núñez, 
2000). This metaphor is evident when people talk about “manipulating” an equation or ask “how 
many fives in twenty?” Lakoff and Núñez (2000) spelled out this use of language in what they call the 
onto- logical metaphor, which takes physical objects as the source domain for conceptualizing 
mathematical entities; however, this phenomenon was noted earlier by Pimm (1987) and Sfard (1994). 
Sfard (1994) noted, “The fact that we use the word ‘existence’ with reference to abstract objects (as in 
existence theorems) reflects in the most persuasive way the metaphorical nature of the world of 
abstract ideas” (p. 48). The objectual metaphor, as it is termed by Font and colleagues (Font et al., 



 

2009), offers great advantages—it allows someone carrying out mathematical work to treat symbols as 
well as abstract ideas as objects, “moving” and “transforming” them, thus radically reducing the 
cognitive load that would be required if every mathematical sign had to be grounded in its logical 
mathematical definition. 

The construct of conceptual integration emerged within cognitive linguistics at about the same 
time as conceptual metaphor; however, where metaphor com- prises a unidirectional mapping from 
exactly one source domain to exactly one target domain, conceptual integration can involve multiple 
input spaces (Fauconnier & Lakoff, 2009). Conceptual integration, also known as conceptual blending, 
“connects input spaces, projects selectively to a blended space, and develops emergent structure” 
(Fauconnier & Turner, 2002, p. 89). 

Conceptual integration often builds on existing blends, in a manner similar to linking metaphors 
(Lakoff & Núñez, 2000). For example, the conceptual mapping for the complex numbers relies on the 
existence of the blend for the number line as well as the blend for the Cartesian coordinate plane, 
each of which are blends themselves (Fauconnier & Turner, 2002; Lakoff & Núñez, 2000). The 
first input space for the “complex numbers” blend consists of the oriented coordinate plane with 
vector arithmetic. For the second input space, the blend draws on positive and negative real 
numbers and their associated operations and proper- ties. The blended space yields the complex 
numbers in the complex plane, in which each element is simultaneously a number and a vector, an 
emergent quality that_[p.717_starts_here] was not present in either of the input spaces. The blend 
creates other new, emergent structures; for example, the blend of the coordinate axes with the 
positive and negative numbers yields a complex number made up of a real part, displayed on the x-axis, 
and a complex part on the y-axis. In addition, “running the blend” (working out its entailments through a 
mechanism called “elaboration”) allows addition and multiplication to be redefined to work consistently 
and coherently in the new space (Fauconnier & Turner, 2002). Fauconnier and Turner (2002) point 
out that the generic space for this blend (that is, the elements that the two spaces share in common) is 
made up of two operations with a specific set of properties, namely, associativity, commutativity, 
identities, inverses, and distributivity of one operation over the other. This combination of operations 
and proper- ties has come to be seen, and labeled, as a mathematical entity in itself, the commutative 
ring. 

Another example of conceptual integration is drawn from the work of Zandieh, Roh, and Knapp 
(2014), who analyzed the logical frameworks that a group of students used in working together to 
create a proof. The task set for the students was to create a proof showing that one conditional 
statement implied a second conditional statement, specifically, that “either Euclid’s Fifth Postulate 
(EFP) implies Playfair’s Parallel Postulate (PPP) or PPP implies EFP” (p. 213). The researchers noted 
two different conceptual blends for the logical framing of their proof: “a simple proving frame” 
(which was inadequate for this particular task) and a “conditional implies conditional proving frame” (p. 
214). The researchers also analyzed the ways in which the students utilized the visual information 
associated with each postulate and proposed that the mechanism of conceptual integration allowed the 
students to merge this information to find the key idea needed for their proof. They also note that 
conceptual blending does not always lead to correct thinking, offering an example in which three 
students “condense the premise and conclusion of EFP in a way that loses the implication structure” 
(p. 228). 

The research of Yoon et al. (2011) provides another example of how the analysis of gesture has 
been integrated into cognitive linguistics. They have investigated what they refer to as “virtual 
mathematical constructs— constructs that are created via sensuous cognition in a mathematical 



 

gesture space through the multimodal use of gestures, speech and other linked semiotic systems” (p. 
893). That is, they point out that a student or teacher can utilize the affordances offered by the body, 
specifically the hand and arm, to establish mathematical meanings through linked gesture and speech 
(McNeill, 2000, 2005), giving the example of a student using a straight hand held at a (varying) angle 
to represent the changing gradient of an antiderivative graph. This is possible because elements of the 
physical world (in this case the hand and arm) can be recruited to serve as one input space for a 
conceptual blend, a particular type of input called real space (Liddell, 1998). The (student’s 
understanding of the) mathematical domain is the second input space. In the blend, the student’s flat or 
angled palm and fingers are mapped to the gradient of the tan- gent line, and the hand’s motion and 
location to movement along the antiderivative graph (Yoon et al., 2011). Via conceptual integration, 
physical action becomes an important resource for the students in constructing an understanding of the 
mathematical content. 

The field of cognitive linguistics offers a powerful theoretical framework and a set of productive 
tools for understanding mathematics that can be applied equally well to a child’s earliest construction of 
number sense or a mathematician’s elaboration of abstract structures. The theory of cognitive linguistics 
is conceptually coherent, supported empirically via multiple methodologies, and connects with other 
advances in cognitive science, including neurological research (e.g., Fields, 2013; Guhe et al., 2011; 
Winter, Marghetis, & Matlock, 2015). One of the principles of embodied cognition is that of cognitive 
continuity (Johnson, 2007), under which mathematics is not ontologically different from other realms 
of cognition and action. Instead, the cognitive mechanisms that have allowed humans to survive and 
thrive over millennia have also supported the development of mathematical thought and other 
conceptual domains. 

 
Looking to the Future: New Problems, Tensions, and Questions 

 
In this chapter we presented an overview of embodiment in mathematics education. The starting point is a 
general claim that contemporary embodiment theories make about meaning and cognition: that 
meaning and cognition are deeply rooted in a physical, material, embodied existence. For instance, 
Sheets-Johnstone (2009) argues that, as a result of our biological makeup, we are naturally equipped 
with a range of archetypal corporeal- kinetic forms and relations that constitute the basis on which we 
make our ways into the world (see also Roth, 2012; Seitz, 2000). Based on this general claim about the 
embodied nature of meaning and cognition, embodied theories attempt to provide answers to questions 
of how meaning arises and of how thought is related to action, emotion, and perception (Edwards, 
2011). Since there is not just one way in which to theorize the cognitive [p. 118 starts here] role 
of the body, it is not surprising to find a variety of contemporary perspectives on embodied 
cognition (for an overview see Wilson, 2002; for a discussion see Radford, 2013). Their differences 
rest, among others, on conceptions about the senses, matter, cognition, and the body itself. The 
differences can be tracked back to the long-standing philosophical problem concerning the 
relationship of the body, the senses, and the mind. The first part of the chapter dealt indeed with a 
brief account of embodiment in the main epistemological Western traditions, namely the rationalist 
and the empiricist traditions. The first part was an attempt to show the legendary painful struggle of 
Western thought to understand the epistemological question of the body to better understand the 
historical background from which contemporary embodiment theories emerge. 

The theoretical perspectives that contemporary embodiment theories bring forward open up 



 

new possibilities to envision teaching and learning in new ways. In the second part of the chapter we 
referred to some approaches that have been incorporated and developed within mathematics education. 
Our overview, although limited, nonetheless shows the variety of approaches and some of their 
differences (e.g., Tall’s and Dubinsky’s “process-object” theories, Roth’s radical phenomenological 
approach, Nemirovsky and collaborators’ Husserlian phenomenological approach, de Freitas and 
Sinclair’s inclusive materialist approach, Arzarello and collaborators’ Vygotskian semiotic 
approach). In the rest of the chapter we developed with more detail two other approaches—the 
“sensuous cognition” approach embedded in cultural historical activity theory and inspired by a 
neo-Hegelian dialectic materialism and the cognitive linguistics approach inspired by the work of 
Lakoff (1987, 1992) and Núñez (2000), among others. These approaches emphasize the embodied 
nature of cognition and provide us with an opportunity to see thematic and conceptual differences in 
the manner in which the body, gestures, the senses, language, and artifacts are considered. As a result 
of these thematic and conceptual differences, the corresponding research questions and 
methodologies vary. 

Embodiment in mathematics education is still an emerging and developing research area. There is 
considerable work to be done at the conceptual and methodological levels. From the viewpoint of the 
“sensuous cognition” approach, we need to better understand the development of students’ cognition 
(which includes thinking, volition, and emotion) not as a strict mental event but rather as a tangible 
phenomenon that is simultaneously conceptual, embodied, and material. That is, we need to examine 
cognition as a phenomenon that arises from and brings together, in the Hegelian dialectical sense, the 
sentient subjects and cultural forms of thought through language, body, artifacts, and semiotic activity 
more generally. We need, for instance, to better understand the social-and-individual activity-bound 
dialectic relationship between (inner and outer) speech, sensuous forms of imagination, gestures, 
tactility, and actions with cultural artifacts (including mathematical symbolism). 

From the perspective of cognitive linguistics, the out- line of a comprehensive framework linking 
bodily experience with mathematical knowledge and practices is emerging. This framework offers 
specific tools for the analysis of the wide range of modalities found in mathematical actions and 
expression, from speech to symbols to images to gestures (Edwards & Robutti, 2014). Yet many 
questions remain. In particular, it is not enough to analyze mathematical ideas “after the fact”; instead, 
we need to learn more about how best to employ various modalities in teaching mathematics. In 
addition, the physiological and neural mechanisms involved in linking physical experience to 
mathematical thought remain relatively unexplored. For example, it would be interesting to compare the 
neurological correlates of learning arithmetic via specific hands-on manipulatives versus others, or 
versus rote memorization. Cognitive linguistic theory would predict differences in the resulting 
conceptual metaphors for arithmetic; if found, would such differences also be reflected in neurological 
structure or function? 

The current increasing interest in embodiment in mathematics education offers hope that this 
research field will continue to attract more researchers who will continue, expand, and envision new 
theoretical and practical paths to improving the teaching and learning of mathematics. 
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